1. Family: Fabaceae Lindl.
    1. Adenolobus (Harv. ex Benth.) Torre & Hillc.

      1. This genus is accepted, and its native range is S. DR Congo to Namibia.

    [FZ]

    Leguminosae, R.K. Brummitt, A.C. Chikuni, J.M. Lock & R.M. Polhill. Flora Zambesiaca 3:2. 2007

    Habit
    Erect to prostrate shrubs or small trees, sometimes with stalked glands.
    Tendrils
    Tendrils absent.
    Leaves
    Leaves alternate or crowded on spur shoots, composed of 2 united leaflets, emarginate to shallowly bilobed, palmately nerved, petiolate, stipulate.
    Flowers
    Flowers in elongate racemes or 1–several on spur shoots, with bracts and paired bracteoles.
    Hypanthium
    Hypanthium obconic to cupular.
    Calyx
    Calyx with 5 relatively short lobes.
    Corolla
    Petals 5, yellow, ± marked red, subsimilar, long clawed, the adaxial one slightly modified.
    Stamens
    Stamens 10, all fertile, in 2 whorls of 5, of two lengths; anthers dorsifixed, dehiscing by longitudinal slits.
    Pistil
    Ovary long stipitate; style elongate; stigma small.
    Fruits
    Pods stipitate, oblong-reniform, dehiscent, the valves thinly textured and not twisting, 1–10-seeded.
    Seeds
    Seeds compressed, ovate in outline, slightly produced to the small subapical hilum.
    [LOWO]

    Legumes of the World. Edited by G. Lewis, B. Schrire, B. MacKinder & M. Lock. Royal Botanic Gardens, Kew. (2005)

    Habit
    Shrubs (erect or prostrate) or small trees.
    Ecology
    Tropical to subtropical arid shrubland. A. garipensis is found on stony or gravelly soil, rocky hills and coarse sand. It can be found on the plateau of the namib desert and on the islands and banks of the orange river. The habitat of A. pechuelii is coarse gravel, stony ground and sandy river beds.
    Distribution
    Found in the Karoo-Namib Regional centre of endemism. A. garipensis is found in Angola, Namibia and Northwest of Cape province of South Africa. A. pechuelii subsp. pechuelii occurs in Botswana and Namibia. A. pechuelii subsp. mossamedensis in Angola and Namibia.
    Note
    A member of subtribe Cercidinae (Wunderlin et al. 1981, 1987) A number of morphological characters suggest a relationship with Cercis. Phylogenetic analysis based on the plastid trnL-trnF region indicates that Adenolobus is sister to the clade containing the genera housed within Bauhinia s.l., Griffonia and Brenierea (Sinou et al. 2009). Adenolobus has pollen similar to that of Cercis, Brenierea, Griffonia, Gigasiphon, Barklya, Lysiphyllum and Bauhinia s.s. species (B. petersiana, B. bohniana, and B. galpinii) (Banks et al. 2013).

    Tribe Cercideae is basally branching in the Leguminosae (Bruneau et al., 2001; Herendeen et al., 2003a), as predicted by Wunderlin et al. (1981), and Cercis is the most basally branching genus in the tribe. While much taxonomic work has been carried out on the tribe in the past thirty years (e.g., Larsen et al., 1980, 1984; Wunderlin, 1976, 1979; Wunderlin et al., 1981, 1987; Zhang, 1995; Vaz, 2003; Vaz & Tozzi, 2003), few species have been included in phylogenetic analyses and inter- and intra-generic relationships are still largely unresolved with the exception of Cercis (Hao et al., 2001; Davis et al., 2002b).

    Wunderlin (1979) and Wunderlin et al. (1981) divided the tribe into two subtribes, Cercidinae and Bauhiniinae, based on seed, floral and fruit characters. Walpers (1842) had already down-ranked Bauhinieae Benth. (1840) to subtribal status, thus the combination Bauhiniinae (Benth.) Wunderlin (1979) is superfluous. Polhill (1994) kept the Cercideae unchanged with two subtribes and five genera. While the Cercidinae contains three small distinct genera, Cercis, Griffonia and Adenolobus, the Bauhiniinae houses the monospecific Madagascan genus Brenierea and the large, diverse pantropical genus Bauhinia sens. lat. which has been segregated into as many as twenty-six genera by various authors (Wunderlin, 1976).

    While many of the Bauhinia segregates are based on minor morphological differences, others are distinguished morphologically by a suite of characters. Britton and Rose (1930), in their account of the Caesalpiniaceae for the North American Flora, divided Bauhinia into several segregate genera, including Schnella Raddi which here is treated as a synonym of Phanera, but might prove to be distinct as indicated in recent molecular analyses by Forest (unpublished data). Britton and Killip (1936) recognised Schnella as distinct from Bauhinia in Colombia. De Wit (1956), treating ‘Malaysian Bauhinieae’, recognised Bracteolanthus, Lysiphyllum, Gigasiphon, Piliostigma, Lasiobema and Phanera as separate genera and this was largely followed by subsequent flora writers in Africa and New Guinea (e.g., Brenan, 1967; Coetzer & Ross in Ross, 1977; Verdcourt, 1979). Others have retained a more inclusive Bauhinia proposed by Wunderlin et al. (1981, 1987), e.g., Macbride (1943: 207–220) for Peru; Larsen et al. (1980) for the Flora of Cambodia, Laos and Vietnam; Larsen et al. (1984) for the Flora of Thailand; Chen (1988) for China, and Larsen & Larsen in Hou et al. (1996) in Flora Malesiana. Zhang (1995) published a morphological cladistic analysis of the series of Bauhinia sens. lat., but few species of Bauhinia have been included in molecular studies. It remains equivocal as to whether Bauhinia sens. lat. is monophyletic, but preliminary molecular results indicate that some elements should be reinstated as distinct genera (Bruneau et al., in prep.; Forest, unpubl.). This runs contrary to the findings of Larsen & Larsen in Hou et al. (1996) who concluded “that Bauhinia in the sense of Linnaeus, Bentham, De Candolle, Taubert and Hutchinson is an evolutionary unit and a very natural genus”. Larsen and Larsen also noted that Bauhinia sens. lat. presents a reticulate pattern of variation across its pantropical range (this apparently conflicting somewhat with its status as a “natural genus”). While this is undoubtedly true if the genus is considered as all-inclusive, recent studies of legume distributions in general (Schrire et al., this volume and 2005) have revealed repeated patterns of generic distribution which appear to be duplicated by at least some of the segregates of Bauhinia. If these segregates are recognised as distinct genera (as several are in this treatment) then the reticulate pattern of variation of Bauhinia is far less pronounced. More sampling at the species level in molecular analyses and more morphological studies are needed across the full pantropical range of Bauhinia sens. lat. before inter- and intra-generic relationships are clearly resolved. In the current account genera that have been recognised as distinct from Bauhinia in at least one flora treatment that post-dates De Wit (1956) have been treated as separate genera, especially where these are supported by the preliminary results from a chloroplast trnL (intron and spacer) sequence analysis (Forest, unpubl.). The reader’s attention is also alerted to the detailed infra-generic division of Bauhinia by Wunderlin et al. (1987) in their reorganisation of the Cercideae which also forms a sound basis for sampling in future studies.

    Palynological studies of Bauhinia (Larsen, 1975; Schmitz, 1977; Ferguson & Pearce, 1986) have all stressed the considerable variation in pollen morphology within the genus sens. lat. and there are clear correlations between pollen exine ornamentation, floral morphology and pollination. It remains to be seen just how closely these correspond to evolutionary relationships of species. Nevertheless, Schmitz (1977) made several new combinations in segregate genera of Bauhinia based on palynological type. These included new names in Lasiobema, Lysiphyllum, Pauletia, Perlebia and Phanera (Pauletia and Perlebia here considered as synonyms of Bauhinia). Zhang (1995), who analysed morphologically the series of Bauhinia proposed by Wunderlin et al. (1987), concluded that while some supraspecific segregates of the genus were supported, none of the subgenera appeared to be monophyletic. Several realignments were proposed.

    The Cercideae as presented here includes 12 genera and (322)–335–(348) species. This treatment differs from Wunderlin et al. (1981, 1987) and Polhill (1994) in that Barklya, Gigasiphon, Lasiobema, Lysiphyllum, Phanera, Piliostigma and Tylosema are considered distinct from Bauhinia. While some of these may well be reincluded in Bauhinia after further study, yet other genera may be reinstated from within Bauhinia. Bracteolanthus, treated as distinct by De Wit (1956), is here included in Lysiphyllum following Wunderlin et al. (1987), while Barklya, considered congeneric with Bauhinia by Wunderlin (1979) and Wunderlin et al. (1981, 1987) is considered distinct following George (1998b) and Forest (unpublished data). The reinstatement of Lasiobema appears least well supported (Forest, unpubl.).

    [LOWO]
    Use
    Both species grazed by livestock and game

    Images

    Distribution

    Native to:

    Angola, Botswana, Cape Provinces, Namibia, Zaïre

    Adenolobus (Harv. ex Benth.) Torre & Hillc. appears in other Kew resources:

    First published in Bol. Soc. Brot., sér. 2, 29: 37 (1955)

    Accepted by

    • Govaerts, R. (1995). World Checklist of Seed Plants 1(1, 2): 1-483, 529. MIM, Deurne.

    Literature

    Flora Zambesiaca
    • Brummitt & Ross in Kew Bull. 31: 399–406 (1976).
    • in Bol. Soc. Brot., Sér.2, 29: 37 (1955).

    Sources

    Flora Zambesiaca
    Flora Zambesiaca
    http://creativecommons.org/licenses/by-nc-sa/3.0

    Kew Backbone Distributions
    The International Plant Names Index and World Checklist of Selected Plant Families 2018. Published on the Internet at http://www.ipni.org and http://apps.kew.org/wcsp/
    © Copyright 2017 World Checklist of Selected Plant Families. http://creativecommons.org/licenses/by/3.0

    Kew Names and Taxonomic Backbone
    The International Plant Names Index and World Checklist of Selected Plant Families 2018. Published on the Internet at http://www.ipni.org and http://apps.kew.org/wcsp/
    © Copyright 2017 International Plant Names Index and World Checklist of Selected Plant Families. http://creativecommons.org/licenses/by/3.0

    Legumes of the World Online
    http://creativecommons.org/licenses/by-nc-sa/3.0